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Metadichol®, a Aany lip ftonnof long chain alcohols, has been shown to inhibit TMPRSS2 (EC50

of 96 ng/ml). ¢/1nhibitor(Jamostat Mesylate (26000 ng/ml), it is 270 times more potent. In
addition, agderate inhibitor of ACE2 @ 31 pg/ml.

In the agsay assay using CACO2 cells it has an EC90 of 0.16 pg/ml.
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Introduction

Over the last few decades there has been an increasing need for a broad spectrum antimicrobial agent which
could inactivate human pathogens such as bacteria and viruses. This approach has been propelled by the
rapid resistance by microorganisms to focused drugs. The most recent trigger is the fear of a future
pandemic caused by new, poorly studied virulent strains, like the present SARS-COV-2.

Background to SARS-COV-2
The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2)(COVID-19), is59
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chain lengths from 10 to 14 carbons. Their studies established that inactivation of
envelopedyarusesby lipids varies greatly, depending on both the nature of the lipid and the type of virus.

alcohols andCorresponding lipids against HSV-1 and HSV-2 respiratory syncytial virus (RSV) and human
virus type 2 (HPIV2) and enveloped viruses, at various concentrations, times and pH levels. After 10-minute
incubation at 37°C and 10 mM concentration, 14 of the lipids tested caused a 100 000-fold or greater
reduction in HSV titer. Testing between pH 7 and 4.2, they showed that the pH to 4.2 caused a more rapid

inactivation of HSV-1 virus titre in one minute. These long chain alcohols may act by penetrating the



envelope of the virus by hydrophobic effect, making it permeable to small molecules and thus inactivating
the virus, the degree of penetration into lipid membranes due to the chain length of a lipid compared with
the thickness of the membrane. 13

Metadichol is a nano lipid formulation of long chain alcohols!4. Metadichol has been shown\to\inhibit

viruses in vitro and in vivo 15:16,17 Metadichol was tested for it inhibitory actions agai 2, TMPRSS?2
and anti-viral assay with SARS-COV-2.
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Anti-Viral assay
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For virus yield reduction (VYR) assay, the supernatant fluid from each compound concentrations was
collected on day 3 post infection, before neutral red staining (3 wells pooled) and tested for virus titer using
a standard endpoint dilution CCID50 assay in Vero 76 cells and titer calculations using the Reed- Muench



(1948) equation. The concentration of compound required to reduce virus yield by 1 log10 was calculated
by regression analysis (EC90). The selective index (SI) is the CC50 divided by EC90.

Table 2. Shows Cytotoxicity and virus yield data for each
concentration of Metadichol tested

Metadichol Cytotoxicity (%) Virus Titer &
Concentration (CCID50 per 0.1
Titer (ug/ml) ml) %
100 100% <0, w
32 100% @ gﬁ
10 83% & %
1 17% % 43 %
0.3 26% @ 1%
0.1 19 %
0.03 »%%

(ypical dose response, with virus reduction
reduct a concentration of 1 pg/ml.

as an out % culated SI ratio was 20 (Table 1),

Procedure

TMPRSS

fluorogenic t pate Cbz-Gly-Gly-Arg-AMC was added and the kinetic fluorescence

p% .
reading was fter 2 mins incubation at 37°C at 383ex and 455em at 5-10 mins using
N

Spectram Wolecular devices. Change in fluorescence (delta RFU) was calculated to
determing the inhibitory effects of the test sample. Camostat mesylate at a two-fold range of

concentrations from 1.56 to 100nM was used as a positive control for TMPRSS2 protease.



Results

Figure. 1.Camostat mesylate Figure 2. Metadichol

TMPRSS2 inhibition using Camostat mesylate TMPRSS2 inhibition Wichol
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ACE2 Inhibision assay
The ACE2 Inhibitor Screening Assay Kit, Catalog no 79923 (BPS biosciences, San Diego USA) was to

measure the exopeptidase activity of ACE2 and inhibition by Metadichol and control inhibitor DX600. The

inhibitory activity was measured based on the fluorescence emitted by the cleavage of the chromogenic

substrate.



Procedure:

Enzyme (ACE2) stocks were prepared and from the supplied kit. 20ul of enzyme solution
(0.5ng/pl) was added to all the wells designated for the assay. DX600, a potent ACE2 inhibitor
was used as a positive control for ACE2 inhibition at various concentrations ranging from

using Spectramax i3x, Molecular devices. The IC50 values

Figure 3. Control DX600 Figu
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Discussion

The results reported open the gateway to effective and safe therapies for COVID-19. Metadichol inhibits

ACE?2 sufficiently to prevent SARS-CoV-2 entry into host cells. and at the same time the concentrations for

inhibition of viral passage is not high enough to affect physiological functions the host.

The results also demonstrate Metadichol’s direct anti-viral effect against SARS-COV-2 vitus
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Table 6; Metadichol vs Various viruses as measured by Neutral Red assay

pg/ml Adenovirus | Tacaribe | Rift Valley SARS Japanese West Nile | Yellow Powassan
Metadichol Fever Encephalitis Fever
D\
5 100% 31% 100% 0% 56% 84% 16% 53%
1.6 100% 69% 100% 52% 87% 100% % 100%
0.5 100% 97% 100% (0 0%( é 95% 100%
0.16 100% 100% 100% 100%
EC50 >9.9 2.8 >8.4 >5.1
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aptrol inflammatory response to SARS-COV-2 is the major cause of disease severity and death in

patients with COVID-19 25 and is associated with high levels of circulating cytokines, TNF, CCI2, NF-kB,
CRP, Ferritin. Metadichol (see Ref 14) is an inhibitor of CCI2 (also known as MCP-1) , TNF, NF-kB and

CRP which, is a surrogate marker for cytokine storm 26 and is associated with Vit D deficiency.



Vitamin D3 is produced in the skin through the action of UVB radiation, reaching 7-dehydrocholesterol in
the skin, followed by a thermal reaction. Vitamin D3 is converted to 25(OH)D in the liver and then to
1,25(0OH)2D (calcitriol) in the kidneys. Calcitriol binds to the nuclear vitamin D receptor, a DNA binding
protein that interacts directly with regulatory sequences near target genes that participate genetically and

epigenetically in the transcriptional output of genes needed for functioning 27. Vitamin D refuses the risk of

1,25(0H)2D reduced the replication of rotavirus both in vitro and\NfNivo by angtherpropess 28. A clinical

trial reported that supplementation with 4000 IU/d of vitami l‘
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ocarbon receptor (AHR) is activated during corona virus infections, impacting anti-viral

response against coronavirus 42, It has been reported that although some NF-kB signaling is needed for

coronavirus replication, excessive activation of this pathway may be deleterious for the virus. AHR limits
NF-kB activation and interferes with multiple antiviral immune mechanisms, including IFN-I production



and intrinsic immunity. Yamada et al, 43 suggested AHR (Constitutive aryl hydrocarbon receptor ) signaling
constrains type I interferon-mediated antiviral innate defense and suggested a need to block AHR
constitutive activity and only an inverse agonist can dampen this. We have shown previously that
Metadichol® binds to AHR as an inverse/protean agonist44. Metadichol is an inverse/protean agonist (see

Ref 14) of vitamin D receptor and thus can reduce complications attributed to out of contr ammation
and cytokine storm.

Vitamin C and its role in viral infections
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targeting diseases. This clustering network of genes can modulate gene pathways and biological networks.

We used www.ctdbase.org 94 that has curated genes relevant to COVID-19.


http://ctdbase.org/detail.go?type=gene&acc=6347
http://ctdbase.org/detail.go?type=gene&acc=3569
http://ctdbase.org/detail.go?type=gene&acc=3574
http://ctdbase.org/detail.go?type=gene&acc=7124
http://ctdbase.org/detail.go?type=gene&acc=7113
http://ctdbase.org/detail.go?type=gene&acc=3586
http://ctdbase.org/detail.go?type=gene&acc=6348
http://ctdbase.org/detail.go?type=gene&acc=183
http://ctdbase.org/detail.go?type=gene&acc=3558
http://ctdbase.org/detail.go?type=gene&acc=3559
http://ctdbase.org/detail.go?type=gene&acc=1440

Table 9 shows diseases impacted by the network of COVID-19 Curated genes.

Disease Name Disease P-value | Corrected Annotate | Annotated Genes
Categories P-value d Genes
Quantity
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Figure 6. Network analysis of genes (Figure 5) involved in SARS-COV-2 Infections.
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VDR ¢6 OS expression, FOS controls AGT, AGT controls expression of AGTR1 and ACE and AR
controlsexpression of TMPRSS?2.

FOS proteases like Furin 71 and Adam-17 have been described to activate the spikes in vitro, for viral

spread and pathogenesis in the infected hosts. The VDR controls Furin expression, mediated through its
interaction with SRC 72. Adam-17 is regulated via CEPBP 73,74 which is involved in the regulation of genes

involved in immune and inflammatory responses. Recently Ulrich and Pilalt 75 proposed that CD147 is



another receptor used as a viral entry like ACE2. CD147 is a known receptor 76 for the parasite that causes
Malaria in humans “plasmodium falciparum”. Interestingly, Metadichol (See Ref 6, US patent 9,006,292)
inhibits the malarial parasite.

The key to entry into cells by SARS-COV-2 is ACE2 which, when endocytosed with SARS-GoV, results in a

reduction of ACE2 on cells, and an increase of serum Angll77. Angll acts as a vasoconstri d a pro-

inflammatory cytokine (Figure 1) via ATIR 78, The AngII-AT1R axis also activates NE-
infection in the lungs can activate NF-kB, which can activate the IL%&@, leading le

inflammatory and autoimmune diseases 81.

The dysregulation of angiotensin downstream of ACE?2 lead king rele, en in COVID-19

patients, resulting in increases TNF that leads to IL6, CCI BYand ~The cytokine storm 80

results in ARDS (Acute respiratory distress syndrome).
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i A
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Clinical

A pilot study (outside the USA) on five COVID-19 patients with minor symptoms showed the absence of
virus after 2-4 days of Metadichol @ 20 mg per day. To validate this further, we have been initiated a study
in collaboration with the government agencies. We have expanded the trial on over 100 patients with



Metadichol vs. comparable control groups, with only Standard Care. We hope to communicate these results
very shortly.

Summary and Conclusions

Metadichol, as we have shown, blocks entry of ACE2, TMPRSS2, and CD147 through inhibjting malarial

parasite and also Furin, whose expression is controlled by VDR. Metadichol is a unique nand lipid emulsion
that inhibits many viruses. It has documented 81 action on multiple genes and proteins thatleactogver 2000
unique interactions with other genes and resulting in a network targets many biomarkeg
thereby helping bring about Homeostasis.
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